
Midterm — Analysis (WBMA012-05)

Friday 12 December 2025, 18.30h–20.30h

University of Groningen

Instructions

1. Students having a clash with another midterm, are allowed to take the exam from
16.00h to 18.00h in room 5161.0162 (Bernoulliborg). Note that it is not allowed to
leave the room even when finishing earlier and it is not allowed to keep a copy of
the exam or of the scrap paper.

2. The use of calculators, books, or notes is not allowed.

3. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42” is
not sufficient. You may refer to all theorems and statements in the book, lectures or
tutorials (unless differently and explicitly specified) but you should clearly indicate
which of them you are using.

4. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (8 + 8 + 6 = 22 points)

Consider the following sequence:

xn+1 =
1

6− 2xn

with x1 = 2.

(a) Show that xn < xn+1 xn > xn+1 and xn > 0 for all n ∈ N.

(b) Prove that the sequence (xn) converges and compute limn→∞ xn.

(c) State the topological definition of convergence of a sequence, that is, the one in terms
of ϵ-neighborhoods and explain its meaning in your own words.

Problem 2 (10 + 6 + 4 = 20 points)

Assume that an ̸= 0 for all n ∈ N and L = lim
∣∣∣an+1

an

∣∣∣ exists. Prove the following state-

ments:

(a) For all ϵ > 0 there exists N ∈ N such that

(L− ϵ)k|aN | < |aN+k| < (L+ ϵ)k|aN | for all k ∈ N.

Here the left inequality is only true if ϵ < L. This was not announced during the
exam, so we will be lenient when grading.

(b) L < 1 =⇒
∑∞

n=1 an converges absolutely.

(c) L > 1 =⇒
∑∞

n=1 an diverges.

Please turn over for problems 3 and 4!
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Problem 3 (8 + 10 + 4 = 22 points)

Let K ⊂ R be compact and nonempty.

(a) Show that supK and infK both exist.

(b) Show that supK and infK are elements of K.

(c) Is the set {1/n | n ∈ N} compact? Justify your answer.

Problem 4 (8 + 6 + 12 = 26 points)

Let g : A ⊂ R → R. For any B ⊆ R define the set g−1(B) by

g−1(B) = {x ∈ A : g(x) ∈ B}.

(a) Write down the ϵ-δ definition of continuity of g at a point c ∈ A. How is this definition
more general than claiming that limx→c f(x) = f(c)?

(b) Let B,C ⊆ A. Show that g(C) ⊆ B if and only if C ⊆ g−1(B).

(c) Let A be open. Show that g is continuous if and only if g−1(O) is open whenever
O ⊆ R is an open set.

Hint: for the last point start by writing the definition of open sets and remember that you
can use (b).

Note: The last point is the definition of continuity you will see in next year in Topology.
At that point you will be able to allow more general domains A and will have a way to
define what it means for a set to be open in A.

End of test (90 points)
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Note that all the problems could be solved in multiple ways, and not all of those solutions
are included here.

Solution of problem 1 (8 + 8 + 6 = 22 points)

(a) We have x2 = 1/2, so x2 < x1. Now assume xn+1 < xn for some n ∈ N. Then,
6− 2xn+1 > 6− 2xn and thus,

xn+2 =
1

6− 2xn+1

<
1

6− 2xn

= xn+1.

By induction, xn+1 < xn for all n ∈ N.

Clearly x1 = 2 > 0. Now assume xn > 0 for some n ∈ N. Then, 6 − 2xn < 6, and
thus,

xn+1 =
1

6− 2xn

>
1

6
> 0.

(b) Since (xn) is decreasing and bounded below by 0, it is convergent by the Monotone
Convergence Theorem (MCT).

Let L = limxn. Taking limits on both sides of the recurrence relation, we get

L =
1

6− 2L
.

Multiplying both sides by 6− 2L and rearranging, we obtain

2L2 − 6L+ 1 = 0.

Solving this quadratic equation we find

L =
6±

√
36− 8

4
=

6±
√
28

4
=

6± 2
√
7

4
=

3±
√
7

2
.

Both roots are positive but we know the limit must be less than x2 = 1/2 (since the
sequence is decreasing), so we discard the larger root and conclude that

L =
3−

√
7

2
.

(c) A sequence (xn) converges to a limit L if it eventually gets arbitrarily close to it.

The word ”eventually” is mathematically translated to the fact that there is a point
in the sequence after which the property holds. In this case the property is being ”ar-
bitrarily close”: this is made mathematically precise by stating that for any distance
ϵ we can choose, all the terms in consideration are within that distance from L. You
are also allowed to use a picture to illustrate this idea.

An ϵ-neighborhood of a point L is the open interval Vϵ(L) = (L − ϵ, L + ϵ). The
topological definition of convergence then states that a sequence (xn) converges to L
if for every ϵ > 0, there exists an N ∈ N such that for all n ≥ N , xn ∈ Vϵ(L).

The latter is the same as requiring |xn −L| < ϵ and thus the topological definition is
literally the same as the ϵ-N definition of convergence:

for every ϵ > 0, there exists an N ∈ N such that for all n ≥ N , |xn−L| < ϵ.
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Solution of problem 2 (10 + 6 + 4 = 20 points)

(a) Let ϵ > 0 be arbitrary, then there exists N ∈ N such that

n ≥ N =⇒
∣∣∣∣∣∣∣∣an+1

an

∣∣∣∣− L

∣∣∣∣ < ϵ.

Rewriting the inequality gives

n ≥ N =⇒ (L− ϵ)|an| < |an+1| < (L+ ϵ)|an|.

Setting n = N proves the desired statement for k = 1. If the statement is true for
some other k ∈ N, then it follows that

N +k+1 > N =⇒ |aN+k+1| < (L+ ϵ)|aN+k| < (L+ ϵ)(L+ ϵ)k|aN | = (L+ ϵ)k+1|aN |,

which proves the inequality for k + 1. The other inequality is proven similarly, with
the caveat that L− ϵ > 0. By induction, the statement holds for all k ∈ N.

(b) If L < 1 we can take 0 < ϵ < 1 − L so that 0 < L + ϵ < 1. By part (a) it follows
that for n sufficiently large, the terms |an| are bounded by the terms of a convergent
geometric series. By the Comparison Test, it follows that

∑∞
n=N |an| converges, which

means that
∑∞

n=1 an converges absolutely.

(c) If L > 1 we can take 0 < ϵ < L− 1 so that L− ϵ > 1. By part (a) it follows that the
sequence (an) is unbounded. Therefore,

∑∞
n=1 an diverges.
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Solution of problem 3 (8 + 10 + 4 = 22 points)

(a) Since K is compact it is bounded, so there exist real numbers m,M such that m ≤
x ≤ M for all x ∈ K.

Thus M is an upper bound for K and m is a lower bound for K. By the Axiom of
Completeness (and its equivalent version for the inf proved in the tutorials) supK
and infK both exist.

Alternatively. As above, by the Axiom of Completeness supK exists. Taking −K :=
{−x | x ∈ K}, since K is bounded below, −K is bounded above, so sup(−K) exists.
Proving the existence of infK = − sup(−K).

(b) Let s = supK, since s is the least upper bound for every ϵ > 0 there exists an x ∈ K
with s − ϵ < x. We want to show that s ∈ K. Note that this could be either an
isolated point or a limit point of K.

If we can construct a sequence (xn) in K that converges to s, then either xn = s for
some n (possibly infinitely many) and thus s ∈ K, or there is a subsequence xnk

̸= s
converging to s and thus s is a limit point of K. In this case, since K is compact, it
is in particular closed and it contains all its limit points and thus s ∈ K.

Pick ϵn = 1/n and xn such that s− ϵn < xn, we get that (xn) → s since,

(s− ϵn) → s as n → ∞.

Concluding this part of the proof.

The argument for the minimum is similar. Let i = infK, since i is the greatest lower
bound for every ϵ > 0 there exists an x ∈ K with x < i + ϵ. Pick ϵn = 1/n and xn

such that xn < i+ ϵn, we get that (xn) → i since,

(i+ ϵn) → i as n → ∞.

Then i ∈ K by the same argument as above.

(c) No, since the set is not closed: 0 is its unique limit point (shown in different ways in
class and tutorials) and is not included in the set.
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Solution of problem 4 (8 + 6 + 12 = 26 points)

(a) For every ϵ > 0, there exists δ > 0 such that for all x ∈ A with |x − c| < δ, it holds
|g(x)− g(c)| < ϵ.

This definition is more general than limx→c g(x) = g(c) because it allows c to be an
isolated point of A (where the limit may not make sense), and it only requires x to
be in A.

(b) ( =⇒ ) Suppose g(C) ⊆ B. If x ∈ C, then g(x) ∈ g(C) ⊆ B, so x ∈ g−1(B). Thus
C ⊆ g−1(B).

( ⇐= ) Conversely, suppose C ⊆ g−1(B). If y ∈ g(C), then y = g(x) for some x ∈ C,
so x ∈ g−1(B) and y = g(x) ∈ B. Thus g(C) ⊆ B.

(c) ( =⇒ ) Suppose g is continuous, and let O ⊆ R be open.

For each x ∈ g−1(O), g(x) ∈ O, so there exists ϵ > 0 such that Vϵ(g(x)) ⊆ O.

By continuity, there exists δ > 0 such that for all y ∈ A with |x − y| < δ, it holds
that |g(x)− g(y)| < ϵ. That is, for all y ∈ Vδ(x) ∩ A, g(y) ∈ Vϵ(g(x)) ⊆ O. Or, more
compactly, g(Vδ(x) ∩ A) ⊆ Vϵ(g(x)) ⊆ O.

This means that Vδ(x) ∩ A ⊆ g−1(O). Thus g−1(O) is open in A.

( ⇐= ) Suppose g−1(O) is open in A for every open O ⊆ R.

Fix c ∈ A and ϵ > 0. Let O = Vϵ(g(c)), which is open.

Then g−1(O) is open in A and contains c, so there exists δ > 0 such that Vδ(c)∩A ⊆
g−1(O).

Thus for all x ∈ A with |x − c| < δ, g(x) ∈ O, so |g(x) − g(c)| < ϵ. Hence g is
continuous at c.
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